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Abstract. The constitutive equations including the energy conservation aspect, for the long-wavelength
dynamics of a liquid comprised of identical, axially symmetric, rigid molecules are microscopically derived.
These equations are extended to the case where the dynamics is generated by the interactions of two
coherent lasers (the pumps) with the liquid. This interaction corresponds to a weak energy absorption and
also to the coupling of the pumps with fluctuations in the mass density, the molecular orientation density
and the temperature of the liquid. The microscopic equations generalise those phenomenologically derived
in Pick et al. [1] where the role of the temperature fluctuations was ignored. Constraints on the relaxation
functions related to the temperature fluctuations and to their coupling with density are derived.

PACS. 64.70.Pf Glass transitions – 78.47.+p Time-resolved optical spectroscopies and other ultrafast
optical measurements in condensed matter

1 Introduction

This paper is the fourth of a series devoted to the optical
study of (supercooled) liquids formed of axially symmet-
ric molecules [1–3]. Since the discovery, at the end of the
19th century [4], of flow birefringence in such liquids, it
was recognized that their shear flow leads to an orien-
tational order, i.e. to a non-zero tensorial, orientational
density proportional to this shear. Indeed, because the
polarisability of such molecules is also anisotropic, the op-
tical anisotropy of the liquid is linearly related to this ori-
entational order. Yet, one had to wait until the beginning
of the seventies [5] to recognize that such a property still
exists at the optical wavelength scale; this was the expla-
nation of the Rytov dip that had just been detected [6,7]
in depolarised light scattering of molecular liquids such as
nitrobenzene, quinoline and aniline.

After the pioneer work of de Gennes in liquid crys-
tals [8], Quentrec [9] was the first to recognize that the
equations proposed by Keyes and Kivelson or Anderson
and Pecora [5] to explain this dip were equivalent to in-
troducing in the usual Navier-Stokes equations describing
the dynamics of a liquid, an additional (tensorial) vari-
able representing this orientational density. Consequently,
the usual set of equations had to be supplemented by an-
other equation describing this orientational variable and
its coupling to the shear flow. These equations were, nev-
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ertheless, unable to properly describe the situation of very
viscous liquids, and a first step was made by Wang [10]
who introduced memory functions into the coupling be-
tween the different variables. Yet, a phenomenological set
of such equations able to explain the dynamics of these
liquids even in the presence of relaxation times tending to
infinity was only proposed more than 10 years after [11].
This set was shown to describe properly the depolarised
spectra of liquids such as metatoluidine [12], salol [13], or
OTP [14], at all temperatures.

Longitudinal phonons correspond both to a local bulk
and to a local shear deformation so that, in a polarised
Brillouin scattering (BS) experiment, one must take into
account, following that analysis, the changes in the lo-
cal dielectric tensor, δε(r, t), related both to the bulk de-
formation (mass density modulation, ρ(r, t)) and to the
orientational density, Q(r, t), where Q is a second rank,
traceless, symmetrical tensor

δεij(r, t) = aρ(r, t)δij + bQij(r, t) . (1.1)

Such a model was developed in [2] with the help of
the Navier-Stokes equations of [11]. New features in the
polarised light scattering specra of supercooled liquids
formed of anisotropic molecules could be predicted from
this approach. Zhang et al. have recently detected one of
them [13].

Simultaneously, a microscopic Mori-Zwanzig deriva-
tion of these phenomenological equations was given in [3].
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It allowed, inter alia, to prove that all the relaxation func-
tions appearing in these Navier-Stokes equations are well
behaved at long time, and that there exist relations be-
tween some of them. A series of inequalities results for the
imaginary part of the Laplace transforms of these relax-
ation functions, or for their product (Onsager relations).
These inequalities ensure that all the light scattering spec-
tra deduced from equation (1.1) will be positive, whatever
will be the relative contribution of the mass density and
the orientational density modulations.

Reference [1], hereafter referred to as I, discussed tran-
sient grating (TG) experiments in the same liquids, using a
phenomenological approach similar to that of [2]. Yet, two
extra features had to be introduced. First, when discussing
BS experiments, one can work in the adiabatic approxi-
mation because heat transfer between the acoustic phonon
under study and the rest of the liquid takes place at times
longer (frequency much lower) than detected in the ex-
periments. Conversely, in a TG experiment, physically im-
portant information is deduced from the coupling of the
energy absorbed by (irreversibly transferred from
the pump lasers to) the liquid with the relaxation
processes through which the liquid thermalises. An ad-
ditional Navier-Stokes equation related to energy conser-
vation, and the contribution of temperature to the stress
tensor have to be included in the theory, both aspects
involving new relaxation processes. Second, sources have
to be added to each material dependent equation of
the set. An already mentioned one is the heat absorp-
tion, which must be introduced into the energy bal-
ance equation. Two other processes have to be taken
into account. One is the well known electrostrictive ef-
fect [15], which introduces a source into the equation
of evolution of the stress tensor. The second is the
orientational role of the electric field of the pumps; its
introduction is necessary to describe experiments concen-
trating on the orientational dynamics of supercooled liq-
uids, such as the Optical Kerr Effect (OKE) [16–19] or the
density induced heterodyne amplified rotational dynamics
(DIHARD) experiments [20]. The same source also consis-
tently explains the dependence of the TG signal on the po-
larisation of the detection and probe beams, as observed,
e.g. in metatoluidine [21].

The existence of sources in both the stress equation
and the orientational density equation introduces a new
problem. Since the pioneer work of Herman and Gray [15]
(see e.g. Shen [22]) it was known that the electrostrictive
source was proportional to a = 1

3 ∂[Trace ε]/∂ρ. Neverthe-
less, this electrostrictive effect and the heat absorption are
the only sources introduced in the classical discussion of
TG experiments. Because one of them is related to the
imaginary part of ε and the other to a modulation of its
real part (see Sect. 4), there is no practical connection be-
tween them: the relation between heat absorption and ‘a’
can be ignored. The situation changes when δε is described
by equation (1.1). Both the electrostrictive and the optical
Kerr effects originate from the coupling of δε to the square
of the electric field of the pumps. The ratio of the strength
of the two corresponding sources must be proportional to

a/b. This proportionality was demonstrated in I making
use of the proposed Navier-Stokes equations. It allowed
to differentiate between two contributions to the TG sig-
nal. One arises from those last two sources, was called
the generalised ISBS (impulsive stimulated Brillouin scat-
tering) signal and it is related through the fluctuation-
dissipation theorem to some BS spectrum. The second is
the ISTS (impulsive stimulated thermal scattering) signal
which originates from the the thermal absorption.

The primary goal of the present paper is to prove, with
the help of an extended Mori-Zwanzig formalism [23], the
set of phenomenological equations used in I, i.e.:

– on the one hand, the generalisation of the Navier-
Stokes equation describing the conservation of energy
to the case where relaxation processes have to be taken
into account. In fact, we shall derive in Section 3 a form
of the energy balance equation that is more general
than the one used in I;

– on the other hand, the relationship between the elec-
trostrictive source and the Optical Kerr Effect.

There is a second, and more formal, goal for this paper.
Though the Navier-Stokes equations of I contained ρ(r, t),
Q(r, t) and the temperature, T (r, t), as dynamical vari-
ables, we did not introduce the latter as another origin
of the modulation of δε(r, t); though it would have been
formally consistent to replace equation (1.1) by

δεij(r, t) = aρ(r, t)δij + bQij(r, t) + cT (r, t)δij , (1.2)

the last term of equation (1.2) was ignored. Its introduc-
tion leads to non-trivial new sources. The neglect of the
last term of equation (1.2) was, nevertheless, not acci-
dental: it gives for density and temperature fluctuations
around equilibrium a contribution to the BS spectra nu-
merically negligible with respect to the first two. The rela-
tionship between the BS spectra and the generalised ISBS
signal indicates that this contribution will also be negli-
gible for this signal. But there is no reason for this prop-
erty to remain valid for the ISTS signal. In fact, during
the completion of I, a TG experiment performed on wa-
ter [24] close to 0 ◦C showed that this neglect would lead
in that case to some misinterpretation of the data. We
found thus necessary to explore thoroughly a consistent
form of the theory to understand under which conditions
and for which part of the signal the use of equation (1.2)
was necessary. Consequently, this paper is organised as
follows:

– Section 2 recalls the model of the supercooled molec-
ular liquid used in [3], summarises the methods used in
that paper and some of the results obtained.

– We introduce, in Section 3, T (r, t) as an additional
variable, discuss the modification it introduces in the
equation of motion of the stress tensor and derive the
evolution equation of T (r, t) (Sect. 3.1) which, as usual, is
expressed as a conservation law for the local energy den-
sity. In Section 3.2, we explain the physical meaning of
the new relaxation functions, δβ(t), related to the tension
(or thermal pressure) and δcV (t), related to the specific
heat, introduced by the theory. This evolution equation
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contains a term that did not need to be considered in I.
We shall show that the complete equation leads to an ex-
pression of the BS spectra that has the correct symmetry
even if the modulation of the dielectric tensor takes into
account its purely thermal contribution. Finally, we derive
in Section 3.3, the properties of, and the relations between
δcV (t), δβ(t) and the bulk viscosity, ηb(t). We show that
they are sufficient to ensure that the BS spectra are pos-
itive at all frequencies whatever are the relative values of
a, b, and c in equation (1.2).

Section 4 introduces the sources in the three material
dependent equations. In analogy with the electrostrictive
effect, due to ρ(r, t), we call ‘electrothermal’ effects the
sources originating from cT (r, t). We extend the results of
I to this new situation, giving the expression of the Navier-
Stokes equations with sources in Section 4.1, and their
solution for a TG experiment in Section 4.2. This solution
is analysed in Section 4.3 where we show that, as in the
simpler case discussed in I, it splits into a generalised ISBS
term, related to the corresponding BS spectrum by the
Fluctuation-Dissipation theorem, and a generalised ISTS
term. The special role played in the detection of the latter
by the thermal modulation of the dielectric tensor is also
discussed.

A brief conclusion, Section 5, summarises our results.
It allows readers not familiar with the theoretical approach
used in this paper to learn about the main results that
have been derived, giving him confidence in the general
validity of the approach and of the conclusions of I. We
also specify the limitations of that paper as well as of the
present one.

2 The non-energy-conserving Navier Stokes
equations

2.1 Notations

Let us briefly recall in this Section the method and some
of the results obtained in [3]. In that paper, we considered
a dense liquid of N linear, rigid, identical, molecules of
mass m at temperature T enclosed in a volume V . The
thermodynamic limit, N → ∞, with fixed particle density,
n = N/V , was implied throughout.

The unperturbed Hamilton function of the system
reads

H0 =
∑

α

Kα + V ({Rα, θα, φα}), (2.1)

where the kinetic energy of the α-th molecule is1

Kα =
P2

α

2m
+
M2

αX +M2
αY

2I
. (2.2)

Here Rα, θα, φα denote the center-of-mass position and
the polar angles of the molecule following the definition

1 We do not take into account the kinetic energy related to
rotations around the molecule’s axis of symmetry, because, for
such molecules, these rotations do not couple to the remainder
of the dynamics.

of [25], Pα is the canonical momentum associated to Rα,
while I is the moment of inertia of the molecule for rota-
tions around any axis perpendicular to its axis of symme-
try and passing through its center of mass; X and Y are
the body-fixed directions of two such axes, perpendicular
one to the other andMαX (resp.MαY ) are the correspond-
ing angular momenta. Finally, V is the potential energy
of the interacting molecules.

The partition sum is given by

Z =
∫ ∏

α

dRαd cos θαdφαdPαdMαXdMαY e
−H0/kBT ;

(2.3)
averaging over the angular momenta is just Gaussian and
averaging over the polar angles amounts to averaging over
the unit sphere.

We introduced in [3] the dynamics of the fluctuating
molecular orientation tensor, written directly in the recip-
rocal space through

Qij(q) = N−1/2
N∑

α=1

(
ûαiûαj − 1

3
δij

)
exp (iq · Rα) ,

(2.4)
where the degrees of freedom of the α-th
molecule are specified by a unit vector, ûα =
(sin θα cosφα, sin θα sinφα, cos θα) for its orientation
and by Rα. The wave vector q characterises the spatial
modulation with respect to the fixed laboratory frame
of a fluctuation, and latin indices denote cartesian
components. The nine components of Qij(q) are not
independent, since the orientation tensor is symmetric
and traceless, reducing the number of independent
components to five. The normalisation of Qij(q) and of
all the variables to be introduced below was chosen such
that the correlation functions are intensive.

We then introduced the orientational current,

Q̇ij(q) = iLQij(q), (2.5)

where L is the Liouville operator, the fluctuations in the
mass density,

ρ(q) = mN−1/2
N∑

α=1

exp (iq · Rα) , (2.6)

and the cartesian components of the mass current,

Ji(q) = N−1/2
N∑

α=1

Pαi exp (iq · Rα) . (2.7)

2.2 Static averages

We then expressed the static correlation functions to low-
est order in q.

Since the Hamilton function respects rotational invari-
ance, all static averages in the liquid phase have to remain
unchanged under any rotation of the system: this implies
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special properties for the correlation functions of two sec-
ond rank traceless tensor (see, e.g., Eq. (2.11)) and corre-
lators between any second rank traceless tensor variable
and any scalar variable will vanish in the long-wavelength
limit.

Because of the compressibility sum rule [26], the static
average of the density could be expressed as

(ρ(q)|ρ(q)) = m2v2/c2i + O(q2), (2.8)

where ci is the isothermal sound velocity and
v =

√
kBTm/m denotes the thermal velocity.

Also because of equation (2.3), the current correlations
read

(Ji(q)|Jk(q)) = δikm
2v2 = δikmkBTm, (2.9)

an expression valid whatever q, while to lowest order in
q, the equal-time correlators of the tensor variables were
shown to be expressed as

(Qij(q)|Qkl(q)) = S2∆ij,kl + O(q2), (2.10)

where

∆ij,kl =
(
δikδjl + δilδjk − 2

3
δijδkl

)
(2.11)

is a fourth-rank tensor the structure of which is governed
by rotational symmetry, and S2 is a quantity which is, as
in equation (2.8), proportional in leading order to kBTm.

Similarly,

(Q̇ij(q)|Q̇kl(q)) = Ω2∆ij,kl, (2.12)

where the characteristic frequency Ω was shown to be
equal to

Ω =

√
kBTmΛ′

n
, (2.13a)

with

Λ′ =
2n
5I
. (2.13b)

The ratio of the static averages of the orientation to the
orientational current, ωR = Ω/S, defines the axial libra-
tion frequency, which is, as ci, independent of temperature
to leading order. Equations (2.13) and the definition of ωR

allow to express Ω2 and S2 as functions of kBTm, n, Λ
′ and

ωR.
All the static averages involving different variables

were found to be equal to zero, in the q → 0 limit, either
because of rotational symmetry, or because of time rever-
sal considerations. Yet, (Q̇ij(q)|Jk(q)) did not fall into
any of those two categories; it deserved a special treat-
ment but we showed in [3] that this static average is also
equal to zero, at any order in q, when the reference point
of each molecule, Rα, is at its center of mass.

2.3 Constitutive equations for equilibrium fluctuations

The next step consisted in obtaining the constitutive equa-
tions for the time evolution of small fluctuations around
equilibrium when the time scale is short enough to neglect
the energy conservation problem.

The mass conservation law relates the density to the
momentum current through

∂tρ(q, t) = iqkJk(q, t). (2.14)

Similarly, the conservation of momentum yields

∂tJk(q, t) = iqlΠkl(q, t), (2.15)

where Πkl(q, t) denotes the fluctuating momentum cur-
rent tensor. In order to close the system, we needed
constitutive equations for the momentum current tensor,
Πkl(q, t), and for the orientational tensor force Q̈ij(q, t).
This was achieved through generalised Langevin equations
which introduce appropriate memory kernels. We first de-
fined a projection operator, P , which projects onto the
subspace spanned by the density, the mass current, the
symmetric traceless parts of the orientation tensor and of
its time derivative:

P =
1

mkBTm

[
|ρ(q))c2i (ρ(q)| + |Jk(q))(Jk(q)|

+
ρm

2Λ′
{|Qkl(q))ω2

R(Qkl(q)|

+ | Q̇kl(q))(Q̇kl(q)|
} ]

+ O(q2), (2.16)

where the sum over repeated indices is implied and where
ρm = mn. P is a projection operator because, once the
symmetric character of Qij(q) and Q̇ij(q) has been taken
into account, one can check that indeed P 2 = P · P .

The time evolution operator, R(t) = exp(iLt), can be
exactly reformulated as

R(t) = R(t)P +
∫ t

0

R(s)PiLR′(t− s)ds+R′(t), (2.17)

with the reduced operatorR′(t) = Q exp(iQLQt)Q, where
Q = 1−P , and a short proof of equation (2.17) was given
in Appendix B of [3]. The benefit of that procedure is that
R′(t) devoids the hydrodynamic singularities (longitudinal
and transverse acoustic modes) present in R(t) because of
the conservation laws, equations (2.14) and (2.15). The
matrix elements of R′(t) could thus be taken in the q = 0
limit. They lead to q-independent memory functions, at
the lowest order (see, e.g., Eq. (2.23a)). We decided to
treat the Qij(q) and Q̇ij(q) fluctuations on the same foot-
ing as ρ(q) and Jk(q) and thus to extract them from R(t)
though that was a matter of convenience and not of ne-
cessity.

We further transformed the second term of the r.h.s of
equation (2.17) by letting the operator iL act on the ‘bra’
part of the projection operator P , which made appear
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some derivatives of those ‘bras’. Because of the Q = 1−P
operator at the l.h.s. of R′(t), this simply leads to

PiLR′(t− s) = −|Q̇kl(q))
ρm

2mkBTmΛ′ (Q̈kl(q)|R′(t− s)

+ iql|Jk(q))
1

mkBTm
(Πkl(q)|R′(t− s).

(2.18)

Separating Πij(q) into its diagonal part, δijp(q), and its
traceless part, πij(q):

Πij(q, t) = p(q, t)δij + πij(q, t), (2.19)

where

p(q, t) = [Πxx(q, t) + Πyy(q, t) + Πzz(q, t)]/3, (2.20)

equation (2.17) was applied to both components of
Πij(q, t). First, a lengthy calculation detailed in [3] lead to

R(t)Pp(q) = c2i ρ(q, t), (2.21)
∫ t

0

R(s)PiLR′(t− s)p(q)ds= i
∫ t

0

ηb(t− s)qkvk(q, s)ds,

(2.22)
with

ηb(t) = (p|R′(t)|p) n

kBTm
, (2.23a)

vi(q) = Ji(q)/ρm, (2.23b)

while R′(t)p(q) produced a noise term. Similarly,
R(t)Pπij(q) produced a term which is O(q2) while equa-
tion (2.18) allowed πij(q) to couple both to Q̈kl and Πkl,
yielding

πij(q, t)=−
∫ t

0

ηs(t−s)τij(q, s)ds+
∫ t

0

µ(t−s)Q̇ij(q, s)ds,

(2.24)
with

ηs(t) =
3
4

n

kBTm
(πzz |R′(t)|πzz), (2.25)

µ(t) = −3
4

n

kBTmΛ′ (Q̈zz|R′(t)|πzz), (2.26)

τij(q, t) = −i qlJk

m
∆ij,kl, (2.27)

where τij(q, t) is the Fourier transform of the strain rate
tensor.

Grouping together equations (2.21), (2.22), and (2.24)
we thus obtained

Πij(q, t) =
[
c2i ρ(q, t) +

∫ t

0

ηb(t− s)iqkvk(q, s)ds
]
δij

−
∫ t

0

ηs(t− s)τij(q, s)ds

+
∫ t

0

µ(t− s)Q̇ij(q, s)ds + noise. (2.28)

Identification of equation (2.28) with the usual Navier-
Stokes equation for the conservation of the linear mo-
mentum density makes clear that ηb(t) is the bulk
viscosity memory function, and ηs(t) the correspond-
ing shear viscosity function, while µ(t) appears as
the orientation-translation (that we called rotation-
translation) memory function.

To derive an equation of motion for Q̈ij(q), we again
made use of equation (2.17). This yielded

R(t)PQ̈ij(q) = −ω2
RQij(q, t), (2.29)

while, from equation (2.18) and the definition of τij(q, t),
we obtained

PiLR′(t− s)Q̈ij(q) =

− |Q̇ij(q))Γ ′(t− s) + Λ′|τij(q))µ(t − s), (2.30)

where the rotational memory function Γ′(t) is defined by

Γ′(t) =
3n

4kBTmΛ′ (Q̈zz |R′(t)|Q̈zz). (2.31)

Equations (2.29) and (2.30) were finally grouped into

Q̈ij(q, t) = −ω2
RQij(q, t) −

∫ t

0

Γ′(t− s)Q̇ij(q, s)ds

+Λ′
∫ t

0

µ(t− s)τij(q, s)ds + noise. (2.32)

Equations (2.28) and (2.32) completed the set of equa-
tions (2.14) and (2.15), the memory function µ(t) allowing
for the coupling between the dynamics of the mass cur-
rent and of the molecular orientation, thus appearing on
the same footing in the two equations.

The relationship between those two equations ap-
peared also under a somewhat different aspect. We showed
in [3] that the Laplace transform of (A|R′(t)|A) of any
variable A with a definite symmetry with respect to time
reversal was analytic with positive imaginary part for com-
plex frequencies ω such that Im(ω) ≤ 0. This is true, in
particular, for (p|R′(t)|p) and for

(rQ̈zz + sπzz |R′(t)|rQ̈zz + sπzz) =
4kBTmΛ′

3n

[
r2Γ′(t) − 2rsµ(t) + s2

ηs(t)
Λ′

]
, (2.33)

for real numbers r, s. This implied that, for Im(ω) ≤ 0,

Im ηb(ω) ≥ 0, (2.34a)

Im ηs(ω) ≥ 0, (2.34b)

Im Γ′(ω) ≥ 0, (2.34c)

and

[Im Γ′(ω)][Im ηs(ω)] − Λ′[Imµ(ω)]2 ≥ 0. (2.34d)

These conditions were shown to be sufficient to ensure
that the spectrum of the correlation function of δεij(r, t),
as expressed in equation (1.1), would be positve for any
wave vector and real frequency, whatever are a and b.
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3 The full Navier-Stokes equations

3.1 Derivation of the equations

Because of the heat absorbed in a transient grating exper-
iment, a first step in its theory consists in enlarging the
set of equations recalled in Section 2 to include the con-
servation of energy in the Navier-Stokes equations. This
requires, within the microscopic approach taken here, first
to define a local temperature variable, second to derive an
equation for its time evolution following the method sum-
marised in the preceding section, as well as to rederive the
preceding equations when this new variable is taken into
account.

The q component of the kinetic energy density of the
liquid is defined by

eK(q) = N−1/2
∑

α

Kα exp(iq · Rα), (3.1)

where the kinetic energy of particle α has been given in
equation (2.2).

The thermal mean value of Kα, 〈Kα〉 is easily com-
puted from equation (2.3) to be

〈Kα〉 = f
kBTm

2
≡ c∞V

n
Tm, (3.2a)

where f is the number of degrees of freedom of the
molecule (f = 5), and c∞V is the specific heat per unit
volume at constant volume for the non-interacting rigid
molecules.

In the linear regime, the kinetic energy fluctuations
have two distinct origins. A first one is the density fluc-
tuations at constant mean kinetic energy per particle. In
the remainder of this paper, we shall be interested in the
second one, T (q), related to the fluctuations of the kinetic
energy without density change. The latter must then be
defined by

c∞V T (q) = eK(q) − ρ(q)
m

c∞V
n
Tm, (3.2b)

i.e.

T (q) =
eK(q)
c∞V

− Tm

ρm
ρ(q). (3.2c)

Furthermore, the same equations (2.2) and (2.3) yield

〈K2
α〉 = f(f − 1)

(
kBTm

2

)2

+ f × 3
(
kBTm

2

)2

= f(f + 2)
(
kBTm

2

)2

, (3.3a)

which results in

〈KαKβ〉 =
(
f
kBTm

2

)2

+ 2f
(
kBTm

2

)2

δαβ. (3.3b)

This implies that the static average (eK(q)|eK(q)) splits
into a coherent term and an incoherent term. The first one
(cf. Eq. (2.8)) is equal to (v2/c2i )(c

∞
V Tm/n)2, so that

(eK(q)|eK(q)) =
v2

c2i

(
c∞V Tm

n

)2

+
c∞V
n
kBT

2
m. (3.4)

Equations (2.8) and (3.2a) show that the coefficient of
ρ(q) in the r.h.s. of equation (3.2b) may be written as

c∞V
n
Tm

mv2

c2i

(
m2v2

c2i

)−1

=
(ρ(q)|eK(q))
(ρ(q)|ρ(q))

. (3.5)

This means that (see Eq. (3.2c))

(T (q)|ρ(q)) = 0. (3.6a)

With the help of equations (3.2c), (3.5), and (3.6a), we
obtain

(T (q)|T (q)) =
1
c∞V

(T (q)|eK(q))

=
1

(c∞V )2

[
(eK(q)|eK(q))

− [(eK(q)|ρ(q))]2

(ρ(q)|ρ(q))

]
. (3.6b)

By construction, the coherent part of (eK(q)|eK(q)) is
equal to {(eK(q)|ρ(q))[(ρ(q)|ρ(q))]−1/2}2. The r.h.s of
equation (3.6b) thus involves only the incoherent part of
(eK(q)|eK(q)):

(T (q)|T (q)) =
kBT

2
m

nc∞V
. (3.6c)

The potential energy of the liquid, V ({Rα, θα, φα}) can
always be written as

V ({Rα, θα, φα}) =
∑

α

v(Rα, θα, φα), (3.7a)

where v(Rα, θα, φα) is a function of the relative positions
{Rγ − Rα} of all the other molecules and of the orien-
tation, θα, φα, {θγ , φγ} of all the molecules. One can thus
define, in analogy with equation (3.1), the q component
of the potential energy density of the liquid

eP (q) = N−1/2
∑

α

eiq·Rαv(Rα, θα, φα). (3.7b)

Since eP (q) depends only on the positions and the orien-
tations of all the molecules, while Kβ depends only on the
kinetic energy of the molecule β, we show in Appendix F,
that

(eP (q)|eK(q)) =
1
N

〈
∑

α,β

eiq·(Rα−Rβ)v(Rα, θα, φα)Kβ〉

=
c∞V Tm

ρm
(eP (q)|ρ(q)). (3.7c)
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This implies for the correlator between the temperature
and the potential energy density

(eP (q)|T (q)) =
1
c∞V

(eP (q)|eK(q)) − Tm

ρm
(eP (q)|ρ(q)) = 0; (3.8)

eP (q) which, for tensorial and time reversal symmetry rea-
sons, could project, at the lowest order in q, on both ρ(q)
and T (q), has in fact no correlation with the temperature.

For the same symmetry reason, the static averages of
T (q) with all the other variables of the problem are again
equal to zero to lowest order in q. Taking into account
this new variable, the projection operator, P , in equa-
tions (2.16) and (2.17), has to be replaced by

P̃ = P + |T (q))
nc∞V
kBT 2

m

(T (q)|, (3.9)

while R̃′(t), which replaces the reduced time evolution op-
erator R′(t) of equation (2.17), is defined through a pro-
jection operator Q̃ ≡ 1− P̃ . Consequently, equation (2.18)
is transformed into

P̃ iLR̃′(t− s) = PiLR̃′(t− s)

−|T (q))
nc∞V
kBT 2

m

(Ṫ (q)|R̃′(t− s) (3.10)

and the additional terms in equations (3.9) and (3.10)
modify the results obtained in Section 2. On the one
hand, in the definition of the four memory functions
ηb(t), ηs(t), µ(t) and Γ′(t), R′(t) has to be replaced by
R̃′(t). On the other hand, as T (q) and Ṫ (q) are scalar
variables, the introduction of the temperature fluctuations
does not affect the dynamics of the tensorial traceless
variables, either the orientational variable, Qij(q), or the
traceless part of Πij(q), πij(q). Conversely, the tempera-
ture couples to the p(q)δij part of Πij(q) and this coupling
acts at two different places.

First

R(t)P̃ p(q) = R(t)Pp(q)

+ T (q, t)
nc∞V
kBT 2

m

(T (q)|p(q)); (3.11)

equation (3.11) introduces an instantaneous coupling be-
tween Πij(q) and T (q, t). With reference to the usual
Navier-Stokes equation where this coupling coefficient has
the form

(
∂P

∂T

)

ρ

= ρmβ, (3.12a)

we define the instantaneous tension coefficient β∞ through

β∞ =
c∞V

mkBT 2
m

(T |p). (3.12b)

Second, the additional term in the r.h.s of equation (3.10)
brings a retarded interaction between p(q, t) and T (q, t),

namely

−
∫ t

0

T (q, s)
nc∞V
kBT 2

m

(Ṫ |R̃′(t− s)|p)ds. (3.13)

The memory function appearing in the preceding equation
is best understood if we define

δβ(t) =
1

mkBT 2
m

(eP |R̃′(t)|p). (3.14)

Then

mkBT
2
mδβ̇(t) = (eP |iQ̃LR̃′(t)|p)

= −(iLQ̃eP |R̃′(t)|p). (3.15a)

Since eP (q) is orthogonal to T (q), equation (3.8), what-
ever q

Q̃eP (q) = eP − P̃ eP (q)

= eP (q) − ρ(q)
c2i

mkBTm
(ρ(q)|eP (q)). (3.15b)

The Liouville operator acting on Q̃eP (q = 0) produces an
ėP (q = 0) term plus a ρ̇(q = 0) term which is equal to
zero because of mass conservation so that

mkBT
2
mδβ̇(t) = −(ėP |R̃′(t)|p). (3.15c)

Conservation of the total energy implies for the long-
wavelength limit of the potential energy density

−ėP = ėK = c∞V

[
Ṫ +

Tm

ρm
ρ̇

]
, (3.15d)

where, once more, ρ̇ vanishes in equation (3.15d); thus,

ρmδβ̇(t) =
nc∞V
kBT 2

m

(Ṫ |R̃′(t)|p), (3.15e)

and

−
∫ t

0

T (q, s)
nc∞V
kBT 2

m

(Ṫ |R̃′(t− s)|p)ds =

− ρm

∫ t

0

T (q, s)δβ̇(t− s)ds. (3.15f)

The additional terms, equations (3.11) and (3.15f), with
the definition of β∞, equation (3.12b), have to be added
to equation (2.28) and yield

Πij(q, t) =
[
c2i ρ(q, t) + ρm

∫ t

0

β(t− s)T (q, s)ds

+
∫ t

0

ηb(t− s)iqkvk(q, s)ds
]
δij

−
∫ t

0

ηs(t− s)τij(q, s)ds

+
∫ t

0

µ(t− s)Q̇ij(q, s)ds + noise, (3.16a)
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with

β(t) = β∞δ(t− 0) − δβ̇(t). (3.16b)

The introduction of the temperature variable replaces
equation (2.28) of Section 2 by equation (3.16a), while
equation (2.32) is not modified.

Let us finally look for the equation of motion of Ṫ (q, t).
Due to time reversal and rotational symmetry, in leading
order of the wavenumber, the only nonzero term of P̃ Ṫ (q)
arises from the current contribution Jk. As shown in Ap-
pendix A, this contribution can be expressed as

R(t)|Jk(q))
1

mkBTm
(Jk(q)|Ṫ (q)) =

Tm

c∞V
β∞ρ̇(q, t).

(3.17)
There is an instantaneous coupling between T (q) and
ρ̇(q).

We now turn to the retarded couplings. From symme-
try considerations, only the two scalar terms are involved.
The first originates from

iql|Jk(q))
1

mkBTm
(Πkl|R̃′(t− s)|Ṫ ), (3.18a)

where, as usual, we have taken the q = 0 limit of the
thermal average involving R̃′(t) and where we have only
to consider the pδkl contribution; it can be transformed
(see Appendix A) into

|ρ̇(q))
Tm

c∞V
δβ̇(t− s). (3.18b)

The second retarded term originates from the last term of
the r.h.s. of equation (3.10) and reads

−|T (q))
nc∞V
kBT 2

m

(Ṫ (q)|R̃′(t− s)|Ṫ (q)). (3.19)

Let us first study the q → 0 limit of the coefficient of T (q)
and define

δcV (t) =
1

nkBT 2
m

(eP |R̃′(t)|eP ). (3.20)

Appendix A shows that, up to terms in second order in q,
one has

nkBT
2
m

∂2

∂t2
δcV (t) = −(c∞V )2(Ṫ |R̃′(t)|Ṫ ). (3.21)

We can thus write, up to a second order term in q

nc∞V
kBT 2

m

(Ṫ (q)|R̃′(t− s)|Ṫ (q)) =

− δc̈V (t− s)
c∞V

+ q2
λ(t− s)
c∞V

+ O(q3), (3.22)

which defines a heat diffusion retarded interaction, λ(t).

Grouping together equations (3.17), (3.18b), and
(3.22), we finally obtain

c∞V Ṫ (q, t) = Tm

∫ t

0

β(t− s)ρ̇(q, s)ds

+
∫ t

0

[
δc̈V (t− s) − q2λ(t− s)

]
T (q, s)ds+ noise.

(3.23)

We shall, in the rest of the paper, keep the retarded char-
acter of λ(t−s) though, because of its physical origin, this
retardation aspect is presumably negligible under any cir-
cumstance.

3.2 Discussion I: form of the Navier-Stokes equations

The set of equations (3.16a), (2.32), and (3.23) is nearly
identical to the Navier-Stokes equations that have been
proposed in I. Equation (3.16a) is exactly the opposite
of the generalisation of the stress tensor σ presented in
equation (2.18) of I. The tension coefficient β(t) is the
sum of an instantaneous interaction, β∞δ(t− 0), and of a
retarded contribution, −δβ̇(t), where δβ(t) is a natural re-
laxation function (see Eq. (3.14)). The formal expression
of β(t), and its role in equation (3.16a), give a simple phys-
ical meaning to δβ(t). If T (q, s) has the form T (q)H(s),
where H(s) is the Heaviside function, the term in β(t)
of equation (3.16a) yields a pressure at time t, ∆p(q, t),
equal to

∆p(q, t) = ρmT (q)[β∞ + δβ0 − δβ(t)]

≡ ρmT (q)[βth − δβ(t)], (3.24a)

where, as in I, f0 ≡ f(t = 0); as δβ(t) tends to zero when
t→ ∞,

δβ(t) =
∆pth(q) −∆p(q, t)

ρmT (q)
, (3.24b)

where ∆pth(q) is the pressure increase at infinite time.
As argued in I, the orientational dynamics contains

no coupling with the temperature so that its microscopic
derivation yields the same result as obtained in [3]. Con-
versely, equation (3.23), which represents the conserva-
tion of energy, has not exactly the same expression as
proposed in I. As in our phenomenological approach, the
same β(t) function couples the temperature fluctuations
to σ in equation (3.16a) and the time derivative of the
mass density fluctuation to the time derivative of the local
temperature in equation (3.23). Yet, equation (3.23) dif-
fers from equation (2.17) of I because the retarded part of
the specific heat does not couple to Ṫ (q, s) but to T (q, s),
the temperature fluctuation. However, after integration by
parts, one obtains

c∞V Ṫ (q, t) −
∫ t

0

δc̈V (t− s)T (q, s)ds =
∫ t

0

cV (t− s)Ṫ (q, s)ds− δċV (t)T 0(q), (3.25a)
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where, as in I,

cV (t) = c∞V δ(t− 0) − δċV (t), (3.25b)

and where

T 0(q) = T (q, t = 0) (3.25c)

is the temperature fluctuation at time t = 0, equa-
tion (3.25a) taking into account that δcV (t) is an even
function of time (see Eq. (3.20)).

The l.h.s. of equation (3.25a) yields a physical inter-
pretation of δcV (t) similar to that of δβ(t). This l.h.s. rep-
resents the energy increase per unit volume and unit time,
∆Q̇(q, t), at constant density, when heat diffusion is not
taken into account. For the same temperature variation as
above, T (q, s) = T (q)H(s), one obtains

∆Q(q, t) =
∫ t

0

∆Q̇(q, t′)dt′

= T (q)[c∞V + δc0V − δcV (t)]

≡ T (q)[cthV − δcV (t)]. (3.25d)

Thus

δcV (t) =
∆Qth(q) −∆Q(q, t)

T (q)
, (3.25e)

where ∆Qth(q) is the heat absorbed per unit volume
at infinite time. The formal expression of δcV (t), equa-
tion (3.20), ensures that δc0V ≡ δcV (t = 0) is positive
while δcV (t) tends to zero when t→ ∞.

Let us now discuss the r.h.s. of equation (3.25a). In I,
the initial temperature fluctuation T 0(q) was taken to be
identical to zero, since in a TG experiment the temporal
evolution of the dynamical variables is dominated by the
excitation by the pump beams: the microscopic derivation
precisely reproduces the equations proposed in I under this
assumption. Additionally, one can use either the form of
the energy conservation equation derived here or the form
proposed in I to derive expression for the BS spectra. One
obtains the same result with both forms when one uses the
scattering model of equation (1.1) (density and orientation
only). Nevertheless, the form derived microscopically is
necessary to obtain expressions for the BS spectra that
have the proper symmetry when one enlarges, as here,
the scattering model to take into account the change in
temperature as an additional light scattering mechanism:

δε(q, t) = aρ(q, t)I + bQ(q, t) + cT (q, t)I. (3.26)

Indeed, a straightforward calculation, strictly following
the method used in [3] and summarised in Appendix B,
yields for VV scattering, i.e. for incident and scattered
photons polarised perpendicular to the scattering plane

(see Appendix B)

IV V (q, ω) =
mkBTm

ω
Im

[
a2

c2i
+

4b2

3
Λ′

ρmω2
R

(
1 − ω2

R

D(ω)

)

− c2
Tm

ρm

1
cV (ω)

ωτh(q, ω)
1 + iωτh(q, ω)

]

+
mkBTm

ω
Im

[
q2C(ω)P ′

L(q, ω)C(ω)

]
,

(3.27a)

with

C(ω) = a +
2bΛ′

3ρm
r(ω) + c

Tmβ(ω)
cV (ω)

iωτh(q, ω)
1 + iωτh(q, ω)

.

(3.27b)

Here P ′
L(q, ω) is the propagator of the longitudinal phonon

P ′
L(q, ω) =

[
ω2 − q2(c2i + ρ−1

m ωηL(ω) + g(q, ω))
]−1

,
(3.28a)

g(q, ω) = −iρmTm
β(ω)2

cV (ω)
iωτh(q, ω)

1 + iωτh(q, ω)
, (3.28b)

where

τh(q, ω) =
cV (ω)
q2λ(ω)

, (3.28c)

ηL(ω) = ηb(ω) +
4
3

[
ηs(ω) − Λ′

ω
D(ω)r(ω)2

]
, (3.28d)

D(ω) = ω2
R + ωΓ′(ω) − ω2, (3.28e)

r(ω) = ωµ(ω) [D(ω)]−1
. (3.28f)

ηb(ω), ηs(ω), µ(ω),Γ′(ω), β(ω), cV (ω) and λ(ω) are,
respectively, the Laplace transforms of ηb(t), ηs(t),
etc., the retarded interactions2 appearing in equa-
tions (3.16a), (2.32) and (3.23). The physical meaning
of the different functions defined in equations (3.28) has
been discussed in I.

Equation (3.27a) generalises the result obtained in [2]
and I for such a scattering geometry. Its first bracket is
independent of the phonons and contains an incoherent

2 As β(t) appears only under the form of convolution prod-
ucts with T (q, t) or ρ(q, t), equations (3.16a) and (3.23),
with a similar expression for cV (t) (see the r.h.s. of Eq.
(3.25a)), we have found convenient, in I and here, to de-
fine β(ω) and cV (ω) as usual Laplace transforms: f(ω) =
i
∫ ∞
0

f(t)e−iωtdt. Another definition, namely β̃(ω) = −iβ(ω),
c̃V (ω) = −icV (ω), could have been chosen. It would have lead,
e.g., to β̃(ω) = βth − ωδβ(ω), stressing the fact that βth =
ρ−1

m lim t→∞(δp(t)/δT (0))ρ is a susceptibility, the −ωδβ(ω)
term corresponding to the extra contribution, in the frequency
space, not contained in βth and which has to be included to
take retardation effects into account.
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contribution from each scattering mechanism. Conversely,
in the second bracket, those contributions act coherently
through C(ω)2. The appearance of the square of C(ω)
underlines that IV V (q, ω) is the imaginary part of the
Fourier-Laplace transform of the correlation function

〈δεV V (r, t)δεV V (0, 0)〉 (3.29)

and that this correlation function is symmetric with re-
spect to time reversal: the coherent fluctuations of the
dielectric tensor are both the source of the longitudinal
phonons and of their detection by light scattering.

Note that in practice, equation (3.27a) reduces to the
results presented in [2] and I because, as discussed in Ap-
pendix E for a more general case, c/a is always much
smaller than cthV /(Tmβ

th) so that the c-contribution to
the BS spectra can always be neglected with respect to
the density contribution (a-term in Eq. (3.27a)).

3.3 Discussions II: the Onsager relations

The three material dependent equations related, re-
spectively to Πij(q, t), equation (3.16a), Q̈ij(q, t), equa-
tion (2.32), and c∞V Ṫ (q, t), equation (3.23), are linear func-
tions of ρ(q, t), Qij(q, t), T (q, t) and/or of their time
derivatives and they are coupled through some of their
memory functions. The coupling between the two first
equations appears though µ(t); as recalled in Section 2,
its form translates into the relations between the three
relaxation functions ηs(t), µ(t), and Γ′(t), that were dis-
cussed in [3]. Conversely, in that paper which ignored the
temperature fluctuations, the fourth relaxation function,
ηb(t) remained an isolated quantity.

The introduction of temperature fluctuations leads to
the additional equation (3.23) and to its coupling to equa-
tion (3.16a), this coupling containing a time dependent
part, δβ̇(t). Equations (2.23a), (3.14), and (3.20) show
that this time-dependent part introduces a relation be-
tween ηb(t), δβ(t), and δcV (t). If

(rp+ seP |R̃′(t)|rp + seP ) =
kBTm

n
(r2ηb(t)

+ 2rsρmTmδβ(t) + s2TmδcV (t)), (3.30)

as p and eP have the same time reversal symmetry, the
imaginary part of the Laplace transform of equation (3.30)
must be non-negative for complex frequencies in the lower
half of the complex plane, whatever r and s. This implies
that for Im(ω) ≤ 0 and, in particular, for ω real,

Im ηb(ω) ≥ 0, (3.31a)
Im δcV (ω) ≥ 0, (3.31b)

[Imηb(ω)][ImδcV (ω)]−Tm[ρmImδβ(ω)]2 ≥ 0, (3.31c)

these equations bringing a complete symmetry between
ηs(t), µ(t), and Γ′(t) on the one hand, ηb(t), δβ(t), and
δcV (t) on the other hand. Furthermore, the whole set of

equations (2.34) was necessary to ensure that any Bril-
louin spectrum analysed through the scattering model
of equation (1.1) would be positive for all frequencies,
whatever be the coefficients a and b. Similarly, the two
sets of conditions, equations (2.34) and equations (3.31),
ensure the same property for the scattering model of
equation (3.26) with the three equations of motion
equations (3.16a), (2.32), and (3.23), whatever are the val-
ues of a, b, c. The proof is rather lengthy and is sketched
in Appendix C, for the case of VV scattering discussed in
the preceding sub-section.

4 The Transient Grating signal

4.1 The Navier-Stokes equations with sources

In a TG experiment, the electric field that acts on the
liquid is

E(r, t) = Re[E1(r, t) + E2(r, t)], (4.1)

where E1(r, t) (resp. E2(r, t)) is the electric field of the
pump laser with wavevector q1 (resp. q2) and polarisation
ê1 (resp. ê2)

E1(r, t) = E1(t)ê1 exp[i(qlz − ωt)] exp(iqx/2) , (4.2)
E2(r, t) = E2(t)ê2 exp[i(qlz − ωt)] exp(−iqx/2),(4.3)

x̂ and ẑ being, in analogy with Appendix A.3, the internal
and external bisectors of q1 and q2.

From a general point of view, the coupling of E(r, t)
with the local relative dielectric tensor, ε(r, t), of the liq-
uid as well as with the local fluctuating dipole moment,
M(r, t), is the origin of the TG signal. The fluctuating
dipole moments give rise to the usual absorption of electro-
magnetic radiation at frequencies corresponding to molec-
ular vibrations, eventually leading to the increase of en-
ergy density of the liquid which is the origin of the ISTS
signal. The interaction of the laser beams with the relative
dielectric tensor, on the other hand, is the origin of the re-
versible coupling of these beams with the liquid, leading
to effects such as the electrostrictive one.

Since our microscopic model of rigid axially symmet-
ric molecules is too simple to account for the absorptive
processes by molecular vibrations, or by their overtones,
we use an ad hoc approach to model the increase of the
energy per unit time and unit volume. In terms of the
macroscopic complex dielectric function [ε0]ω, this contri-
bution is given by

∆Ė(r, t) =
ε0
2

E1(t) · E2(t)Im([ε0]ω) cos(qx), (4.4)

where ω/2π corresponds to the frequency of the pump
lasers. Note that the absorption properties of the liquid are
identified with those of the unperturbed liquid, the spatial
modulation being entirely due to the interference pattern
of the pump beams. Also, a space-independent increase of
the energy results from the incoherent parts of the total
squared electric fields; however, since this increase does
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not give rise to a TG signal, it has been discarded. The
absorption process, equation (4.4), is, by definition, the
source of the generalised ISTS signal. To simplify nota-
tion, we suppress the dependence of the frequency of the
pump beams and treat the absorption constant as a phe-
nomenological parameter

Im([ε0]ω) = mH. (4.5)

The second part of the TG signal, called in I the gener-
alised ISBS signal, originates from the first order change
in the real part of εij(r, t). This corresponds to a change
in the energy density that can be expressed as

∆E(t) = ∆E(q, t) +∆E(−q, t), (4.6)

with

∆E(q, t) = − ε0
4
E1(t)E2(t)ê1i ê

2
jδεij(q, t), (4.7)

where δεij(q, t) is given by equation (3.26).
If Aµ(q, t), with 1 ≤ µ ≤ 15, represents the 15 vari-

ables introduced in Sections 2 and 3, ρ(q, t), Ji(q, t),
Qij(q, t), Kij(q, t) = −Q̇ij(q, t), and T (q, t), equa-
tion (4.7) has the form

∆E(q, t) = −Aµ(q, t)fµ(q, t), (4.8)

where the different non-zero fµ(q, t) are easily derived
from equation (3.26). The Aµ(q, t) being linearly coupled
to the coefficients fµ(q, t) in equation (4.8), the latter ap-
pear as generalised forces acting on the corresponding dy-
namical variables. Also, with the help of Kij(q, t), the
whole set of equations (2.14 and 2.15), equation (3.16a),
and equation (3.23), can be cast into the form

Ȧµ(q, t) = −
∫ t

0

Bµν(q, t− s)Aν(q, s)ds+ noise. (4.9)

Equation (4.9) describes the deterministic evolution of the
set {Aµ(q, t)} when the liquid is perturbed from equilib-
rium by the random forces represented by the noise terms.
When those random forces are replaced by the generalised
forces {fµ(q, t)}, these forces add to each fluctuation at
time s, Aµ(q, s), a deterministic term, −χµλ(q)fλ(q, s),
where χµλ(q) is the static susceptibility

χµλ(q) =
n

kBTm
(Aµ(q)|Aλ(q)), (4.10)

whence

Ȧµ(q, t) = −
∫ t

0

Bµν(q, t− s)[Aν(q, s)

− χνλ(q)fλ(q, s)]ds. (4.11)

The different χνλ(q) corresponding to the generalised
forces, fλ(q, t) are easily obtained, to lowest order in q,
from the results of Sections 2 and 3 and are diagonal in
the type of variables, ρ, Q, and T .

Introducing, in analogy with [3],

Ug(t) =
mε0

4
E1(t)E2(t)ê1 · ê2, (4.12)

T g
ij(t) =

mε0

4
E1(t)E2(t)[e1i e

2
j + e2i e

1
j −

2
3
δij ê1 · ê2],

(4.13)

equation (4.11) shows that the coupling of the first or-
der change, δεij(q, t), to the electric fields of the pumps
changes
– ρ(q, t) into ρ(q, t) − (a/c2i )U

g(t) in equation (3.16a);
– Qij(q, t) into Qij(q, t) − (2bΛ′/ρmω

2
R)T g

ij(t) in equa-
tion (2.32);

– T (q, t) into T (q, t) − (cTm/ρmc
∞
V )Ug(t) in equa-

tion (3.16a) and equation (3.23).
Furthermore, using equations (4.5) and (4.12), one can
transform equation (4.4) into

∆Ė(t) = ∆Ė(q, t) +∆Ė(−q, t), (4.14a)

with

∆Ė(q, t) = ∆Ė(−q, t) = HUg(t), (4.14b)

and the rate of increase of the energy density, HUg(t), has
to be added to the r.h.s. of the equation of conservation
of energy.

The three equations of motion for the material depen-
dent variables now read

Πij(q, t) =

[
c2i ρ(q, t) + ρm

∫ t

0

β(t − s)T (q, s)ds

+
∫ t

0

ηb(t− s)iqk
Jk(q, s)
ρm

ds

]
δij

−
∫ t

0

ηs(t− s)τij(q, s)ds

+
∫ t

0

µ(t− s)Q̇ij(q, s)ds

− δij

[
aUg(t) − cTm

c∞V

∫ t

0

β(t− s)Ug(s)ds

]
,

(4.15a)

Q̈ij(q, t) = −ω2
RQij(q, t) −

∫ t

0

Γ′(t− s)Q̇ij(q, s)ds

+ Λ′
∫ t

0

µ(t− s)τij(q, s)ds+
2bΛ′

ρm
T g

ij(t),

(4.15b)

c∞V Ṫ (q, t) = Tm

∫ t

0

β(t− s)ρ̇(q, s)ds

+
∫ t

0

[
δc̈V (t− s) − q2λ(t− s)

]
T (q, s)ds

− cTm

ρmc∞V

∫ t

0

[
δc̈V (t− s) − q2λ(t− s)

]
Ug(s)ds

+HUg(t). (4.15c)
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In the absence of a c-contribution to δεij , equations (4.15)
are those proposed in I and the expressions of the sources
proportional to a and b were derived in Appendix A of
that paper through macroscopic arguments. The latter
involved the equilibrium situation where the time depen-
dence of Ug(t) and T g

ij(t) are Heaviside functions. Con-
versely, the structure of the sources related to c seem dif-
ficult to obtain from the same type of arguments. The
c-contribution adds sources to Πij(q, t) and to the rate of
increase of the energy density, equation (4.15c), as already
guessed by Shen [22]. Yet, his intuitive result largely differs
from the additional terms of equations (4.15a) and (4.15c).

4.2 The Transient Grating signal

The expression of the TG signal was obtained in I under
the hypothesis that δε(q, t) depended only on ρ(q, t) and
Q(q, t). Concentrating on the case where only longitudi-
nal phonons are involved, it was shown that any signal was
a weighted sum of four independent signals each charac-
terised by a parallel polarisation of the two pumps on the
one hand, and of the probe and detection beams on the
other hand. Those polarisations could be either along x̂
(H polarisation) or along ŷ = ẑ× x̂ (V polarisation). The
pump polarisation was labeled by the index εex that takes
the value 1 for a V polarisation and the value −1 for a
H polarisation; in the same manner, the value of the in-
dex εp labeled the polarisation of the probe and detection
beams. The results given in I (Eqs. (3.16) and (3.17)) cor-
responded to the case where E1(t)E2(t) was proportional
to E1E2δ(t−0) and where the heat diffusion process con-
tained no relaxation contribution. Generalising those re-
sults to the case where such a relaxation process exists but
keeping the same time dependence of the electric fields in
order to give the expression of the response function of
the system, the results of I could be expressed as

Rεp,εex(q, t) = LT−1[Rεp,εex(q, ω)], (4.16)

where LT−1[ ] indicates an inverse Laplace transform.
Rεp,εex(q, ω) read

Rεp,εex(q, ω) = i

[
b2

Λ′

ρm

1 + 3εpεex

3
1

D(ω)

− q2C0(εp, ω)P ′
L(q, ω)

(
C0(εex, ω)

− ρmβ(ω)
cV (ω)

H
τh(q, ω)

1 + iωτh(q, ω)

)]
, (4.17)

with

C0(ε, ω) = a+
bΛ′

ρm

3ε− 1
3

r(ω). (4.18)

We defined the generalised ISBS response functions as the
H independent part of equation (4.17) and showed that

RISBS
εp,εex

(q, t) =
−1

mkBTm

d

dt
(δεεp(q, t)|δεex(q, 0)), (4.19)

where δεεp(q, t) is the ij component of δε(q, t) whose
indices i and j are fixed by εp, with a similar mean-
ing for δεex(q, t). Equation (4.19) simply expresses the
Fluctuation-Dissipation Theorem: the part of Rεp,εex(q, t)
which is the response to the generalised forces is the op-
posite, up to a mkBTm factor, of the time derivative of
the correlation function of the corresponding components
of the dielectric tensor.

When δε is expressed by equation (1.2), a lengthy but
straightforward calculation yields a generalisation of equa-
tions (4.17) and (4.18) that reads

Rεp,εex(q, ω) = R1
εp,εex

(q, ω) +R2
εp,εex

(q, ω), (4.20)

with

R1
εp,εex

(q, ω) = i

[
b2Λ′

ρm

1 + 3εpεex

3
1

D(ω)

+
c2Tm

ρmc∞V
+ c

cωTm/ρm + iH

cV (ω)
τh(q, ω)

1 + iωτh(q, ω)

]
,

(4.21)

R2
εp,εex

(q, ω) = −iq2C(εp, ω)P ′
L(q, ω)

[
C(εex, ω)

− ρmβ(ω)
cV (ω)

H
τh(q, ω)

1 + iωτh(q, ω)

]
, (4.22)

C(ε, ω) = a+
bΛ′

ρm

3ε− 1
3

r(ω)

+ cTm
β(ω)
cV (ω)

iωτh(q, ω)
1 + iωτh(q, ω)

. (4.23)

A derivation of equations (4.20–4.23) can also be obtained
from the results of Section 3, those summarised below
equation (4.13), and from equation (4.15c); it gives an-
other insight to the physical content of those equations:

– First, in equation (4.22), C(εp, ω) is the generalisation
of the quantity C(ω) of equation (3.27b) which applies
to a εp = 1 experiment (V polarisation of the incident
and scattered beams). This had to be expected: this
factor represents the detection mechanism of the co-
herent part of the signal, which is the same in a BS
and in a TG experiment: C(εp, ω) simply generalises
the expression of the detection mechanism, both for a
BS and a TG experiment, for the different polarisa-
tions of the beams.

– Second, the term on the r.h.s. of P ′
L(q, ω) represents the

sources that generate the longitudinal phonon; it is eas-
ily obtained from the same term in equation (4.17) by
adding to the electrostrictive, orientational and heat
absoprtion sources the three additional sources gener-
ated by the electrothermal contribution.

– Finally, the terms of R1
εp,εex

(q, ω) which contain a fac-
tor ‘c’ have a somewhat different origin. The Laplace
transform of equation (4.15c) reads
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T (q, ω) = Tm
β(ω)
cV (ω)

iωτh(q, ω)
1 + iωτh(q, ω)

ρ(q, ω)

+ i

[
cTm

ρmc∞V

+
cωTm/ρm + iH

cV (ω)
τh(q, ω)

1 + iωτh(q, ω)

]
Ug(ω).

(4.24)

The term in brackets at the r.h.s. of equation (4.24) is
detected only through the cT (q, t)δij term of δεij(q, t); it
thus appears with a c factor as the second and last terms of
equation (4.21). We can also note that the H-independent
parts of these two terms correspond to two different ef-
fects. One is the counterpart, through the Fluctuation-
Dissipation theorem, of the c2 incoherent contribution to
IV V (q, ω) in equation (3.27a); it is a generalised ISBS con-
tribution. Conversely, the ic2Tm/(ρmc

∞
V ) term represents

the instantaneous response of the liquid, through c∞V , to
the pump beams: it has no equivalent in a BS experiment.

4.3 Discussion

Several comments are in order.
First, comparing equations (4.20–4.23) for

εp = εex = 1 (V polarisation for all the beams) with
equation (3.27), it is apparent that the Fluctuation-
Dissipation theorem is again fulfilled between the
generalised ISBS signal and the IV V (q, ω) spectrum, i.e.
the H-independent terms of equations (4.21) and (4.22)
fulfill equation (4.19)3. The generalised ISTS signal
(terms proportional to H) has not only a contribution
from R2

εp,εex
(q, ω) but also one from R1

εp,εex
(q, ω) that

originates from the c-contribution to δε, not considered
in I.

Second, it was emphasised in I that the results of a
polarised TG experiment could be analysed as the sum of
six distinct, polarisation-independent contributions that
we called Elementary Response Functions (ERFs). One
of them is the first b2 term of equation (4.17), which is
the Optical Kerr Effect signal and is limited to times
much shorter than the other ERFs. Three ERFs corre-
sponded, through the Fluctuation-Dissipation theorem, to
the longitudinal phonons generated by their mass den-
sity or by their orientational density contributions and
detected by one of those two channels. Finally, the two
last ERFs formed the generalised ISTS signal, which are
generated by the heat absorption but are detected by the
same mechanisms as above. Equations (4.20)–(4.23) in-
troduce in principle more ERFs. Yet, the most important
information is contained in the generalised ISTS signal,
so that the TG experiments are, in fact, performed when
the latter is non-negligible with respect to the generalised
ISBS one. We show in Appendix E that, under such condi-
tions, all the generalised ISTS contributions arising from

3 Up to the ic2Tm/(ρmc∞V ), see above.

the c-contribution are negligible4 when the two conditions

|c|
a

� cthV
Tm|βth| , (4.25a)

|c|
a

� ρm|βth|
c2i

, (4.25b)

are fulfilled. The first condition implies that the elec-
trothermal contribution may be neglected in C(ε, ω) with
respect to the electrostrictive one, i.e. in the r.h.s. of the
stress tensor equation, equation (4.15a). This is always the
case as it can be numerically checked for all known super-
cooled liquids. This contribution can thus be omitted in
equation (4.22), as was done in I. The second condition
means that the ISTS contribution to R1

εp,εex
(q, ω) is neg-

ligible with respect to that of R2
εp,εex

(q, ω), and that is
also usually the case.

The analysis of Rεp,εex(q, ω) performed in I in terms
of five ERFs thus breaks down only if condition (4.25b) is
not fulfilled. This obviously takes place if there is a tem-
perature at which βth = 0, which implies the same thing
for the thermal expansion coefficient, αth, as βth = c2iα

th.
This is the case in normal water where, at ambient pres-
sure, αth goes to zero at 4 ◦C. Equation (4.22) shows that
the R2

εp,εex
(q, ω) contribution to the generalised ISTS sig-

nal, which is a decreasing exponential in the t ∼ τh(q, ω)
time domain, will change sign at the same temperature as
αth does. Conversely, the R1

εp,εex
(q, ω) contribution to the

ISTS signal, which is another exponential function with
the same decay time, has a temperature independent am-
plitude. This second contribution explains that the change
of sign of the exponential decay of the ISTS signal takes
place at a temperature slightly different from 4 ◦C, as has
been found by Taschin et al. [24]. Yet, condition (4.25a) is
obviously fulfilled. This implies that even in that case the
c-contribution can be ignored not only in the dynamics of
the liquid, but also in the detection mechanism, except for
this R1

εp,εex
(q, ω), ISTS contribution.

5 Summary and final remarks

5.1 Summary

This paper offers a microscopic derivation of the set of
phenomenological equations proposed in I. It also gives an
extension of those results to the description of TG exper-
iments performed on supercooled molecular liquids when
the temperature contributions are systematically taken
into account. I proposed that:

1) The material dependent Navier-Stokes equations for
a liquid formed of rigid linear molecules (rigid symmetric
tops) would read

Πij(q, t) = Πb
ij(q, t), (5.1a)

4 The terms involving b can always be separated out as they
depend on the indices εp and εex.
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with

Πb
ij(q, t) =

[
c2i ρ(q, t) + ρm

∫ t

0

β(t− s)T (q, s)ds

+
∫ t

0

ηb(t− s)iqkvk(q, s)ds

]
δij

−
∫ t

0

ηs(t− s)τij(q, s)ds

+
∫ t

0

µ(t− s)Q̇ij(q, s)ds, (5.1b)

Q̈ij(q, t) = Q̈b
ij(q, t), (5.2a)

with

Q̈b
ij(q, t) = −ω2

RQij(q, t)

−
∫ t

0

Γ′(t− s)Q̇ij(q, s)ds

+ Λ′
∫ t

0

µ(t− s)τij(q, s)ds, (5.2b)

∫ t

0

cV (t− s)Ṫ (q, s)ds = c∞V Ṫ
b(q, t), (5.3a)

with

c∞V Ṫ
b(q, t) = Tm

∫ t

0

β(t− s)ρ̇(q, s)

− q2
∫ t

0

λ(t− s)T (q, s)ds. (5.3b)

β(t) and cV (t) were respectively expressed as

β(t) = β∞δ(t− 0) − δβ̇(t), (5.4a)

cV (t) = c∞V δ(t− 0) − δċV (t), (5.4b)

where δβ(t) and δcV (t) have the usual properties of cor-
relation functions. Those equations allowed to express
δε(r, t) in terms of thermal fluctuations when δε(r, t) is
expressed by equation (1.1) and, incidentally, to obtain
from it, the expression of the BS scattering intensities.

2) In a TG experiment, the sources that generate
the signal have two distinct origins. One is a weak ab-
sorption of the energy of the two pump lasers that is
instantaneously transformed into heat. The second is the
reversible coupling of the electric fields of these two lasers
to the liquid through the real part of its local dielectric
tensor. The introduction of this second type of sources re-
quired a special treatment. Admitting that the coupling
acts by perturbing only the mass (electrostrictive effect)
and the orientational (Optical Kerr Effect) densities, equa-
tion (1.1) was used to obtain from an energy minimisation
procedure, the expression of these two last sources.

The Navier-Stokes equations including the three
sources and neglecting the thermal fluctuations read

Πij(q, t) = Πb
ij(q, t) − aUg(t)δij , (5.5)

Q̈ij(q, t) = Q̈b
ij(q, t) +

2bΛ′

ρm
T g

ij(t), (5.6)
∫ t

0

cV (t− s)Ṫ (q, s)ds = c∞V Ṫ
b(q, t) +HUg(t). (5.7)

Ug(t) and T g
ij(t) are defined in equations (4.12) and (4.13)

and describe the time evolution of the amplitudes of the
pumps as well as, for T g

ij(t), their polarisation while H
describes the energy absorption process.

3) Finally, expressions for the TG signals were derived.
The signal depends on the polarisation of the pump lasers,
of the probe and of the detection beams. In case of parallel
polarisation of the pumps, on the one hand, of the probe
and detection beams, on the other hand, the signal could
be split into a generalised ISTS signal and a generalised
ISBS signal that were discussed in the Introduction.

On top of presenting a microscopic derivation of these
results (see below), the present paper has extended the re-
sults of I to the case where the modulation of the local di-
electric tensor includes the direct influence of temperature
changes, equation (1.2). This derivation has been achieved
through the Mori-Zwanzig technique already used in [3]
and with the same model of rigid molecular tops as in I.

In this model, the potential energy of the liquid de-
pends only on its configuration (position and orientation
of the molecule). Conversely, the kinetic energy that the
molecule can acquire is only related to the motion of their
centers of mass and to their rotations around axes per-
pendicular to their axis of symmetry.

This model allowed us, first, to define the coefficient c∞V
of equation (5.4b) as the part of the specific heat per unit
volume due to a change of kinetic energy, c∞V = (5/2)nkB.
The temperature modulation, T (q) around the mean tem-
perature Tm was then defined by

c∞V T (q) = eK(q) − ρ(q)
c∞V Tm

ρm
, (5.8)

where eK(q) is the kinetic energy modulation. Equa-
tion (5.8) makes clear that a temperature modulation is
the part of eK(q) which does not correspond to a density
modulation at constant kinetic energy per molecule.

The evolution equation of T (q) was then obtained.
The only difference with the formulation of [3] was the
addition of T (q) to the relevant (distinguished) variables

ρ(q),J(q), Q(q) and
˙
Q of that paper. The set of dynamical

equations obtained contained equations (5.1) and (5.2).
The derivation of equation (5.1) provided a microscopic
definition of β∞ and δβ(t), equation (5.4a). δβ(t) ap-
peared, up to a material dependent factor, as the matrix
element of the reduced time evolution operator, R̃′(t), (see
Eq. (3.9) and three lines below it) for the potential energy
and the pressure variable, equation (3.14). Also, β∞ was
proportional to the static correlator of the temperature
with the same pressure variable, equation (3.12b).
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The evolution equation of T (q) appeared under a form
equivalent, see equations (3.23) and (3.25), though not
identical to equation (5.3). It was also more complete as
it contained the contribution of a possible temperature
modulation at time t = 0, not included in I. Indeed, this
equation could be written as

∫ t

0

cV (t− s)Ṫ (q, s)ds = c∞V Ṫ
b(q, t)

− δċV (t)T 0(q) + noise, (5.9)

where T 0(q) is that temperature modulation. The addi-
tional term of equation (5.9) allows the expression of the
BS spectra to have the proper symmetry even when the
light scattering model contains a direct contribution of the
temperature fluctuations.

A microscopic expression of δcV (t), equation (3.20),
also resulted from the Mori-Zwanzig technique. δcV (t) was
expressed as the matrix element of R̃′(t) related to the
potential energy modulation. Because the bulk viscosity
memory function, ηb(t), is the corresponding matrix el-
ement for the fluctuations of the pressure, we obtained
conditions on the Laplace transforms of ηb(t), δβ(t), and
δcV (t) and of some of their products. These conditions
ensure, with results obtained in [3], that the BS spectra
would be positive whatever are the relative contributions
of ρ(q), Q(q), and T (q) to the modulation of the dielectric
tensor.

We finally used our microscopic model to derive the
equations of motion of our three variables when the liq-
uid is coupled to a temporally and spatially varying elec-
tric field, the coupling including now first order changes
of the local dielectric tensor in ρ(q), Q(q), and T (q).
This allowed, first, to demonstrate the validity of equa-
tions (5.5–5.7), up to their H contribution, when the T (q)
contribution is ignored, second, to extend it to the case
when this contribution is included. Yet, our model of rigid
molecules does not allow for a non-negligible heat absorp-
tion, The latter (H contribution) had still to be added in
an ad hoc manner. This lead to the three equations

Πij(q, t) = Πb
ij(q, t) − δij

[
aUg(t)

− cTm

c∞V

∫ t

0

β(t− s)Ug(s)ds

]
, (5.10)

Q̈ij(q, t) = Q̈b
ij(q, t) +

2bΛ′

ρm
T g

ij(t), (5.11)

∫ t

0

cV (t− s)Ṫ (q, s) = c∞V Ṫ
b(q, t)

− cTm

ρmc∞V

∫ t

0

[
δc̈V (t− s) − q2λ(t− s)

]
Ug(s)ds+HUg(t).

(5.12)

Expressions of the TG signal were then derived, equa-
tions (4.20) to (4.23), that generalise those obtained in I;
the introduction of the electrothermal effect (term in c)

preserves the distinction between the generalised ISTS
and the generalised ISBS signals, with the connection of
the latter to the corresponding BS spectrum. This result
stresses the reversible character of the coupling of the
pump lasers to the real part of the local dielectric ten-
sor.

We also showed that one needs very special conditions,
namely the passing through zero of the thermal expansion
coefficient, for having to take into account the electrother-
mal effect. Except for this case, the formulae obtained in
I are sufficient to analyse the results of TG experiments.

5.2 Remarks

The microscopic model we have used in the present pa-
per has been sufficient to derive the Navier-Stokes equa-
tions without, equations (5.1), (5.2), and (5.9), and with,
equations (5.10) to (5.12), sources corresponding to the
model of dielectric fluctuations given by equation (1.2).
Our derivation relies on two assumptions that need to be
underlined.

One is the axial symmetry (symmetric top) of the
molecules. This hypothesis makes the derivation and the
form of the resulting equations relatively easy to handle.
Nevertheless, one can show that a description of the orien-
tational degrees of freedom of non-axial molecules in terms
Wigner rotation matrices leads to light scattering spectra
which can be cast into the form of the equations used in
the present paper [27].

The second assumption is the rigidity of the molecules,
which is fundamentally incorrect and has two different
consequences. One is related to the energy absorption pro-
cess. In real supercooled molecular liquids, this process
takes place through a weak absorption of the pump laser
light by the combination of bands and/or overtones of
some molecular internal vibrations. The very short life-
time of these vibrational modes results in a quasi instanta-
neous heating of the liquid. The local dielectric function of
a real glass-forming liquid contains the signature of those
absorption processes, with the corresponding decay chan-
nels, while they are absent in the model of rigid molecules.
This explains the need for an ad hoc introduction of the H
term (Eq. (4.5)) in Section 4, instead of giving a rigorous,
microscopic basis to the absorption process.

The rigid molecule hypothesis has a more obvi-
ous consequence. Whatever is the temperature of the
(supercooled) liquid, the thermalisation of the internal
molecular vibrations takes place through intramolecu-
lar anharmonic processes, and through interactions with
neighboring molecules. Both processes take place on the
picosecond time scale; they are not sensitive to the struc-
tural relaxation process and must be included into c∞V /n,
as experimentally measured. This explains why one de-
duces, e.g., from the measurements5 of Laughlin and
Uhlmann [28] in salol at Tg that c∞V /n is 21.4kB, i.e. one

5 For such dense liquids, the difference between the specific
heat at constant pressure and constant volume are negligible
with respect to the order of magnitude we discuss here.
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order of magnitude larger than the 5kB/2 value expected
in the rigid molecule model.

Similarly, the structural relaxation consists not only of
a change in the density and in the orientational static cor-
relation functions, but also in a modification of the mean
internal structure of the molecules. The latter involves an
important energy change that contributes to δc0V , the time
integral of −δċV (t); the latter turns out to be, for all the
supercooled liquids where it has been measured, of the
same order of magnitude as c∞V . For instance, one deduces
from the measurements of Laughlin and Uhlmann [28] in
salol at Tg, δc0V /c

∞
V = 0.72. Values of the same order of

magnitude, c∞V /n = 12.5kB, δc0V /c
∞
V = 0.80 can be de-

duced from the modulated specific heat measurements of
Birge [29] in glycerol at Tg. The introduction of such ef-
fects are certainly out of the scope of the present paper.
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Appendix A

We give below the derivation of results given in Section 3
that require some mathematical manipulations.

A.1 Equation (3.17)

The current contribution to P̃ Ṫ (q) reads, in leading order
of the wave vector:

R(t)|Jk(q))
1

mkBTm
(Jk(q)|Ṫ (q)) =

− Jk(q, t)
1

mkBTm
(J̇k(q)|T (q))

= −Jk(q, t)
1

mkBTm
(iqlΠkl|T )

= −Jk(q, t)
1

mkBTm
(iqlδklp|T )

= iqkJk(q, t)
1

mkBTm
(p|T )

=
Tm

c∞V
β∞ρ̇(q, t). (A.1)

Note that the last line of equation (A.1) requires the def-
inition of β∞, equation (3.12b).

A.2 Equation (3.18b)

The pδkl contribution to Πkl in equation (3.18b) can be
successively transformed into:

iql|Jk(q))
1

mkBTm
(Πkl|R̃′(t− s)|Ṫ ) =

iqk|Jk(q))
1

mkBTm
(p|R̃′(t− s)|Ṫ )

=
1

mkBTm
|ρ̇(q))(p|R̃′(t− s)|Ṫ )

= − 1
mkBTm

|ρ̇(q))(Ṫ |R̃′(t− s)|p)

= |ρ̇(q))
Tm

c∞V
δβ̇(t− s). (A.2)

The last but one line of this series of equalities results from
the fact that Ṫ (t) and p(t) have opposite time reversal
symmetries.

A.3 Equation (3.21)

The technique used to obtain the formal expression of
δβ(t) applies also to δcV (t). Repeating twice the argu-
ments one obtains successively

nkBT
2
m

∂2

∂t2
δcV (t) =

∂

∂t
(eP |iQ̃LR̃′(t)|eP )

= − ∂

∂t
(iLQ̃eP |R̃′(t)|eP )

= c∞V
∂

∂t
(Ṫ |R̃′(t)|eP )

= c∞V (Ṫ |R̃′(t)|iLQ̃eP )

= −(c∞V )2(Ṫ |R̃′(t)|Ṫ ). (A.3)

Appendix B: Expression of IVV(q, ω)

We compute here the VV Brillouin scattering intensity,
IV V (q, ω), resulting from the use of equation (1.2), i.e.
from fluctuations of δε(q, t) due to changes in mass den-
sity, ρ(q, t), orientational density Q(q, t), and temper-
ature T (q, t). The equations of motion are given by
equations (3.16a), (2.32), and (3.23). The computation
follows closely the methods used in [2]. Yet, to keep in
line with the notations in I, the wave vectors of the in-
cident light, qi, and of the scattered light, qf , are in the
x̂ − ẑ plane, x̂ and ẑ being respectively the external and
internal bisectors of qi and qf ; ŷ is defined as ŷ = ẑ × x̂.
VV scattering thus represents polarisation of the incident
and scattered photons parallel to ŷ.
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Combining equations (2.14) and (2.15) with equa-
tion (3.16a) yields

− (c2i q
2 + ρ−1

m ωkL(ω) − ω2)
[
ρ(q, ω) − ρ0(q)

ω

]

− q2ωµ(ω)
[
Qxx(q, ω) − Q0

xx(q)
ω

]

+ iq2β(ω)T (q, ω) = c2i q
2 ρ

0(q)
ω

, (B.1a)

with

kL(ω) = ηb(ω) +
4
3
ηs(ω). (B.1b)

Similarly, the Laplace transform of equation (2.32) yields
for Qxx(q, ω)

Qxx(q, ω) − Q0
xx(q)
ω

= −4
3

Λ′

ρm

[
ρ(q, ω) − ρ0(q)

ω

]

− ω2
R

D(ω)
Q0

xx(q)
ω

, (B.2)

while one obtains from equation (3.23)

T (q, ω) =
1

cV (ω)
iτh(q, ω)

1 + iωτ(q, ω)

[
Tmωβ(ω)

(
ρ(q, ω)

− ρ0(q)
ω

)
+ ic∞V T

0(q)

]
. (B.3)

Inserting equations (B.2) and (B.3) into equation (B.1)
yields

ρ(q, ω) − ρ0(q)
ω

=
q2

ω
P ′

L(q, ω)A(q, ω), (B.4)

with

A(q, ω) = c2i ρ
0(q) − ω2

Rr(ω)Q0
xx(q)

+
ρmωβ(ω)
cV (ω)

ic∞V
1 + iωτh(q, ω)

T 0(q). (B.5)

Furthermore, one can write

δεyy(q, t) = aρ(q, t) − b

2

[
Qxx(q, t)

− (Qyy(q, t) −Qzz(q, t))
]

+ cT (q, t), (B.6)

while equation (2.32) applied to the yy and zz components
of Q yields

Qyy(q, ω) −Qzz(q, ω) =
(

1 − ω2
R

D(ω)

) (
Q0

yy(q)
ω

− Q0
zz(q)
ω

)
. (B.7)

With the help of the static averages (see Sect. 2.2) one
successively obtains

(ρ(q, ω)|δε0yy(q)) =

mkBTm

ω

[
q2P ′

L(q, ω)C(ω) +
a

c2i

]
, (B.8)

(Qxx(q, ω)|δε0yy(q)) =

mkBTm

ω

[
−4

3
Λ′

ρm
r(ω)q2P ′

L(q, ω)C(ω)

−2b
3

Λ′

ρm

1
ω2

R

(
1 − ω2

R

D(ω)

)]
, (B.9)

(T (q, ω)|δε0yy(q)) =
mkBTm

ω

iωτh(q, ω)
1 + iωτh(q, ω)

×
[
Tmβ(ω)
cV (ω)

q2P ′
L(q, ω)C(ω) − c

Tm

ρm

1
icV (ω)

]
, (B.10)

with

C(ω) = a+
2b
3
Λ′

ρm
r(ω) + cTm

β(ω)
cV (ω)

iωτh(q, ω)
1 + iωτh(q, ω)

.

(B.11)
This yields

(aρ(q, ω) +
b

2
Qxx(q, ω) + cT (q, ω)|δε0yy(q)) =

mkBTm

ω

[
a2

c2i
+
b2

3
Λ′

ρm

1
ω2

R

(
1 − ω2

R

D(ω)

)

− c2
Tm

ρm

1
cV (ω)

ωτh(q, ω)
1 + iωτh(q, ω)

+ q2C(ω)P ′
L(q, ω)C(ω)

]
, (B.12)

while, because of equations (B.7) and (2.10)

b

2
(Qyy(q, ω) −Qzz(q, ω)|δε0yy(q)) =

mkBTm

ω

b2Λ′

ρm

1
ω2

R

(
1 − ω2

R

D(ω)

)
. (B.13)

Grouping together those two results, one obtains

LT
[
(δεyy(q, t)|δε0yy(q))

]
(ω) =

mkBTm

ω

[{
a2

c2i

+
4b2

3
Λ′

ρm

1
ω2

R

(
1 − ω2

R

D(ω)

)

− c2
Tm

ρm

1
cV (ω)

ωτh(q, ω)
1 + iωτh(q, ω)

}

+ q2C(ω)P ′
L(q, ω)C(ω)

]
. (B.14)
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Appendix C: Positivity of the IVV(q, ω)
spectrum

Appendix B makes clear that one can write IV V (q, ω) as

IV V (q, ω) = Im

[
LT

[
(aρ(q, t) − b

2
Qxx(q, t)

+ cT (q, t)|aρ0(q) − b

2
Q0

xx(q) + cT 0(q))

]
(ω)

]

+ Im

[
LT

[
(
b

2
(Qyy(q, t) −Qzz(q, t))| b2

× (Q0
yy(q) −Q0

zz(q)))

]
(ω)

]
, (C.1)

i.e. that IV V (q, ω) is the sum of two quadratic forms. One
is based on the imaginary part of the Laplace Transforms
of the correlation functions of the three variables ρ(q, t),
Qxx(q, t), and T (q, t), while the second corresponds to the
same quantity for the correlation function of Qyy(q, t) −
Qzz(q, t). Let us write

Ã1(q, t) = ρ(q, t), (C.2a)

Ã3(q, t) = Qxx(q, t), (C.2b)

Ã5(q, t) = T (q, t), (C.2c)

Ã6(q, t) = Qyy(q, t) −Qzz(q, t), (C.2d)

with q = qx̂, and further introduce

Ã2(q, t) = − ˙̃A1(q, t), (C.3a)

Ã4(q, t) = − ˙̃A3(q, t), (C.3b)

Ã7(q, t) = − ˙̃A6(q, t). (C.3c)

With such notations, IV V (q, ω) reads

IV V (q, t) =
5∑

µ,ν=1

Im
(
aµC̃µν(q, ω)aν

)

+
7∑

µ,ν=6

Im
(
aµC̃µν(q, ω)aν

)
, (C.4)

with

C̃µν(q, ω) = LT [(Ãµ(q, t)|Ã0
ν(q))](ω), (C.5a)

a2 = a4 = a7 = 0. (C.5b)

We show below that the two quadratic forms appearing in
equation (C.4) are, independently, positive definite.

Let us start by discussing the first one. The five equa-
tions of motion for Ãµ(q, t) are easily obtained from equa-
tions (2.14), (2.15), and (3.16a) and equation (3.23). Be-
cause, in such a geometry, τxx = (4/3)div v, these five
equations may be written under the form

˙̃Aµ(q, t) = −
∫ t

0

B̃µν(q, t− s)Ãν(q, s)ds, (C.6a)

where the elements B̃µν(q, t) are

0 δ(t− 0) 0 0 0

−q2c2i q2ρ−1
m kL(t) 0 q2µ(t) −q2ρmβ(t)

0 0 0 δ(t− 0) 0
0 4

3
Λ′
ρm
µ(t) −ω2

Rδ(t− 0) Γ ′(t) 0

0 Tm

c∞V
β(t) 0 0 − δc̈V (t)−q2λ(t)

c∞V

.

(C.6b)
Note that equation (C.6a) represent an extension of equa-
tions used, e.g. by Mountain [30], or Allain and Lallemand
[31], Ã2(q, t) being their variable ψ(t), when relaxation
phenomena as well as the additional rotational variable
Qxx(q, t) (with Kxx(q, t) = −Q̇xx(q, t)) have to be taken
into account.

Making the product of both sides of equation (C.6a)
with Ã0

λ(q), taking the thermal average and performing
the Laplace transform yields

M̃µν(q, ω)C̃νλ(q, ω) = kBTmχ̃µλ(q), (C.7a)

with

M̃µν(q, ω) = ωδµν − B̃µν(q, ω), (C.7b)

χ̃µν(q) =
1

kBT
(Ã0

µ(q)|Ã0
ν(q)), (C.7c)

where B̃µν(q, ω) is the Laplace transform of B̃µν(q, t). The
value of the matrix elements of the static susceptibility
matrix χ̃µν(q) at the lowest order in q are easily derived
from the definitions of the various Ãµ(q) and from the
results of Section 2.2. One finds, in particular, that this
matrix is diagonal with all its elements positive. We show
in Appendix D that a sufficient condition for the form
Im(C̃µν(q, ω) to be positive definite is that the form Rµν ,
defined by

R̃ =
−1
2i

[χ̃ M̃+ − M̃ χ̃], (C.8)

and by M̃+
µν = M̃∗

νµ, is also positive definite.
A lengthy but straightforward calculation yields for

the elements of R̃µν(q, ω) Because we look for sufficient
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−Im( ω
c2i

) 0 0 0 0

0 −q2Im(ω) + q4ρ−1
m Im(kL(ω)) 0 4

3
q2 Λ′

ρm
Im(µ(ω)) iq2 Tm

c∞
V

Re(β(ω))

0 0 − 4
3

Λ′
ρm

1
ω2

R
Im(ω) 0 0

0 4
3
q2 Λ′

ρm
Im(µ(ω)) 0 − 4

3
Λ′
ρm

Im(ω − Γ ′(ω)) 0

0 −iq2 Tm
c∞

V
Re(β(ω)) 0 0 − Tm

ρmc∞
V

Im(ω + δc̈V (ω)−q2λ(ω)
c∞

V
)

. (C.9)

conditions for the form R̃µν to be non-negative, it is suf-
ficient to prove that it can split into a sum of forms that
individually have the same property. Furthermore, as we
are interested in a light scattering spectrum, we need only
to study the case of real frequencies, Im(ω) = 0. The non-
trivial part of R̃µν is then a 3× 3 matrix that can be split
into three independent forms.

– One form involves only R̃55, namely
(q2Tm/ρm(c∞V )2)Imλ(ω). Assuming that no relaxation
process is included in the heat diffusion process,
λ(ω) = iλ0; this leads to the obvious condition

λ0 > 0. (C.10)

– To obtain the two other forms, let us first factorise
out the q2 terms in line 2 and in column 2 of the ma-
trix (C.9), then split kL(ω) into its ηb(ω) and ηs(ω)
parts, see equation (B.1b). One of these form is related
to the indices 2 and 4. Once 4ρm/3 has been factorised
in that matrix, the remaining form reads

Im(ηs(ω)) Λ′Im(µ(ω))
Λ′Im(µ(ω)) Λ′Im(Γ ′(ω))

. (C.11)

This form is positive definite provided that the three
conditions (Eqs. (2.34b) to (2.34d)) are satisfied. As
recalled in Section 2, these conditions result from the
respective expressions of ηs(t), µ(t), and Γ ′(t).

- The last form involves only the indices 2 and 5 of the
same matrix, namely

1
ρm

Im(ηb(ω)) iTm

c∞V
Re(β(ω))

−iTm

c∞V
Re(β(ω)) − Tm

ρm(c∞V )2 Im(δc̈V (ω))
. (C.12)

For ω real,

Re(β(ω)) = ωIm(δβ(ω)), (C.13a)
−Im(δc̈V (ω)) = ω2Im(δcV (ω)). (C.13b)

The conditions for the form given in equation (C.12) to be
positive definite are thus those given by equations (3.31):
they are automatically fulfilled because of the respective
expressions of ηb(t), δβ(t) and δcV (t).

The six conditions listed above, which are direct conse-
quences of our theoretical approach, ensure that the first
quadratic form of equation (C.4) is non-negative for real
frequencies.

The second form appearing in equation (C.4) is again
non-negative for real frequencies. Indeed, for the variable
Ã6 and Ã7, the matrix B̃µν reads

0 −δ(t− 0)
−ω2

Rδ(t− 0) Γ ′(t)
, (C.14)

which is the part of the matrix appearing in equa-
tion (C.6b) corresponding to the indices 3 and 4. Fur-
thermore,

χ̃66 = 3χ̃33, (C.15a)
χ̃77 = 3χ̃44. (C.15b)

The corresponding matrix R̃ is thus, up to a factor 32 = 9,

the part of the matrix R̃, equation (C.9), corresponding
to the two indices 3 and 4. Equation (2.34c) ensures that
it is positive definite.

IV V (q, ω) is thus non-negative for ω real whatever are
the coefficients a, b and c entering into the expression of
the fluctuation δεij .

Appendix D: Positive definite character
of the form Im(C̃µν)

We prove here that a sufficient condition for the form
Im(C̃µν), where C̃µν is defined by equation (C.5a), to
be positive definite is that the matrix Rµν defined by
equation (C.8) has the same property. Let us write equa-
tion (C.7a) as

M̃ C̃ = aχ̃, (D.1)

where χ̃ is diagonal and real, a being a positive number.

Multiplying equation (D.1) on its r.h.s. by M̃+, where M̃+

is the hermitian conjugate of M̃ (M̃+
µν = M̃∗

νµ) yields

M̃ C̃ M̃+ = aχ̃ M̃+. (D.2)

Furthermore, as C̃ is a symmetric matrix, C̃+ = C̃
∗
, and

as χ̃ is real and diagonal,

[M̃ C̃]+ = C̃
∗
M̃+ = aχ̃. (D.3)
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(eP (q)|eK(q)) =
1

N

∫ (∑
αβ eiq·(Rα−Rβ)v(Rα, θα, φα)e−V0/kBTm

) ∏
λ dRλd cos θλdφλ

∫
e−V0/kBTm

∏
λ dRλd cos θλdφλ

Kth
β , (F.4)

Multiplying equation (D.3) on its l.h.s. by M̃ and sub-
tracting the result from equation (D.2) yields

M̃ Im(C̃) M̃+ =
a

2i
(χ̃ M̃ − M̃ χ̃) = aR̃. (D.4)

Thus, if R̃ is positive definite, the same is true for Im(C̃).

Appendix E

There are two different places where the electrostrictive
contribution, characterised by a, and the electro-thermal
contribution, characterised by c, compete. One is in
C(ε, ω), the other is in the relative weight of R1

εp,εex
(q, ω)

and R2
εp,εex

(q, ω) in the generalised ISTS signal, once this
first competition has been taken care of.

For simplicity, we neglect here the frequency depen-
dence of β(ω) and cV (ω) and identify them with icthV and
iβth, respectively. The a and c contributions to C(ε, ω)
then read

C̃(ω) = a+ cTm
βth

cthV
− (−i)cTmβ

th

cthV

1
τh

iτh
1 + iωτh

. (E.1)

The second term of the r.h.s. of equation (E.1) is negligible
with respect to the first one as long as

|c|
a

� cthV
Tm|βth| . (E.2)

This relation appears to be fulfilled for all the molecu-
lar liquids studied so far, and will obviously be the more
valid the smaller is |βth|. Also, because the frequency de-
pendence of β(ω) and cV (ω) does not change the order of
magnitude of the real part of their ratio, one can safely
neglect this dependence for the present discussion. Finally,
the last term of the r.h.s. of equation (E.1) has been writ-
ten in a way that makes clear that it generates a signal
which is the convolution product of the signal generated
by the second term with τ−1

h exp(−t/τh). The τ−1
h factor

ensures that this signal is negligible with respect to this
second term.

Condition (E.2) ensures that the electrothermal contri-
bution may be neglected with respect to the electrostric-
tive one, as far as the generalised ISBS signal and/or the
generalised ISTS part of R2

εp,εex
(q, ω) are concerned.

Let us now compare the generalised ISTS contribu-
tions of R1

εp,εex
(q, ω) and R2

εp,εex
(q, ω), concentrating, for

the R2
εp,εex

(q, ω) part, on the electrostrictive detection.
For such a discussion, one can approximate P ′

L(q, ω) by
−(q2c2i )

−1. We have thus to compare c (in R1
εp,εex

(q, ω))

with (a/c2i )(β
thρm), whence the additional condition to

neglect the c-contribution

|c|
a

� ρm|βth|
c2i

. (E.3)

Though this condition is also generally met in a super-
cooled liquid, it clearly breaks down if βth tends to zero
and this condition is always more stringent than relation
equation (E.2) because

ρm|βth|
c2i

� cthV
Tm|βth| . (E.4)

Indeed, if ca is the adiabatic sound velocity and γ given by

γ =
cthP
cthV

, (E.5)

where cthP is the thermal value of the specific heat at con-
stant pressure, one has (see e.g. I)

c2a − c2i
c2i

= γ − 1 =
ρmTm

c2i

(βth)2

cthV
. (E.6)

γ − 1 is always a small positive number, which ensures
that relation (E.4) is always satisfied.

Appendix F: Proof of equation (3.7c)

The unperturbed Hamilton function of the system, H0,
can be written as

H0 = V0 +K0, (F.1)

where

V0 = V ({Rα, θα, φα}) =
∑

α

v(Rα, θα, φα), (F.2a)

K0 =
∑

α

Kα, (F.2b)

K0 not depending on the configuration of the liquid. Then

(eP (q)|eK(q)) =
1
N〈 ∑

αβ

eiq·(Rα−Rβ)v(Rα, θα, φα)Kβ

〉
(F.3)

can be written as

See equation (F.4) above
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with

Kth
β =

∫
Kβe

−K0/kBTm
∏

λ dPλdMλXdMλY∫
e−K0/kBTm

∏
λ dPλdMλXdMλY

. (F.5)

As V0 does not depend on the momenta, the integration
over the momentum variables involves only equation (F.5),
and one easily identifies Kth

β with 〈Kβ〉 = c∞V Tm/n

(Eq. (3.2a)), a quantity independent of the molecule β.
(eP (q)|eK(q)) then appears as the product of two inde-
pendent factors, whose first one is clearly (eP (q)|ρ(q)/m).
This proves the identity

(eP (q)|eK(q)) =
c∞V Tm

ρm
(eP (q)|ρ(q)). (F.6)

References

1. R.M. Pick, C. Dreyfus, A. Azzimani, R. Gupta, R. Torre,
A. Taschin, T. Franosch, Eur. Phys. J. B 39, 169 (2004)

2. R.M. Pick, T. Franosch, A. Latz, C. Dreyfus, Eur. Phys.
J. B 31, 217 (2003)

3. T. Franosch, A. Latz, R.M. Pick, Eur. Phys. J. B 31, 229
(2003)

4. Referred to, in R. Cerf, H.A. Scheraga, Chem. Rev. 51,
185 (1952), as the “Maxwell effect”

5. T. Keyes, D. Kivelson, J. Chem. Phys. 54, 1786 (1971);
H.C. Andersen, R. Pecora, J. Chem. Phys. 54, 2584 (1971);
H.C. Andersen, R. Pecora, J. Chem. Phys. 55, 1496 (1972)

6. V.S. Starunov, E.V. Tiganov, I.L. Fabelinskii, JETP Lett.
5, 260 (1967)

7. C.I.A. Stegeman, B.P. Stoicheff, Phys. Rev. Lett. 21, 202
(1968)

8. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals,
2nd edn. (Clarendon Press, Oxford, 1993)

9. B. Quentrec, J. Phys. France 37, 1255 (1976)
10. C.H. Wang, Mol. Phys. 58, 497 (1988)

11. C. Dreyfus, A. Aouadi, R.M. Pick, T. Berger, A.
Patkowski, W. Steffen, Eur. Phys. J. B 9, 401 (1999)

12. C. Dreyfus, A. Aouadi, R.M. Pick, T. Berger, A.
Patkowski, W. Steffen, Europhys. Lett. 42, 55 (1998)

13. H.P. Zhang, A. Brodin, H.C. Barshilia, G.Q. Shen, H.Z.
Cummins, R.M. Pick, Phys. Rev. E 70, 011502 (2004)

14. C. Dreyfus, A. Aouadi, J. Gapinski, M. Matos-Lopes, W.
Steffen, A. Patkowski, R.M. Pick, Phys. Rev. E 68, 011204
(2003)

15. R.M. Herman, M.A. Gray, Phys. Rev. Lett. 19, 824 (1967)
16. R. Torre, P. Bartolini, M. Ricci, R.M. Pick, Europhys.

Lett. 52, 324 (2000)
17. H. Cang, V.N. Novikov, M.D. Fayer, Phys. Rev. Lett. 90,

197401 (2003)
18. G. Hinze, D.D. Brace, S.D. Gottke, M.D. Fayer, Phys.

Rev. Lett. 84, 2437 (2000)
19. R. Torre, P. Bartolini, R. Righini, Nature 428, 296 (2004)
20. G. Hinze, R.S. Francis, M.D. Fayer, J. Chem. Phys. 111,

2710 (1999)
21. A. Taschin, R. Torre, M. Ricci, M. Sampoli, C. Dreyfus,

R.M. Pick, Europhys. Lett. 56, 407 (2001)
22. Y.R. Shen, The principles of non linear optics, p. 192 (J.

Wiley - Interscience, New York, 1984)
23. D. Forster, Hydrodyamic Fluctuations, Broken Symmetry,

Correlation Functions (Addison - Wesley, 1990)
24. A. Taschin, P. Bartolini, M. Ricci, R. Torre, Philos. Mag.

84, 1471 (2004)
25. C.G. Gray K.E. Gubbins, Theory of molecular fluids, Vol.

1 (Clarendon Press, Oxford, 1984)
26. J.P. Boon S. Yip, Molecular Hydrodynamics, 2nd edn.

(Dover, New York, 1991)
27. M.G. Schultz, T. Franosch, e print: cond-mat/0411472

(2004)
28. W.T. Laughlin, D.R. Uhlmann, J. Phys. Chem. 76, 2317

(1972)
29. N.O. Birge, Phys. Rev. B 34, 1631 (1986)
30. R.D. Mountain, J. Res. Nat. Bur. Stand. 72A, 95 (1968)
31. C. Allain, P. Lallemand, J. Phys. France 40, 679 (1979)


